
MATHEMATICS OF COMPUTATION 
VOLUME 61, NUMBER 203 
JULY 1993, PAGES 245-267 
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ABSTRACT. In this paper, we use machine experiments to test the validity of the 
Sato-Tate conjecture for Maass waveforms on PSL(2, Z)\H . We also elaborate 
on Stark's iterative method for calculating the Fourier coefficients of such forms. 

1. INTRODUCTORY REMARKS 

Around 20 years ago, D. H. Lehmer [19] empirically investigated the extent 
to which the numbers Xp = T(p)p-11/2 obey Sato-Tate statistics as p --- oc. 
Here, T(n) is the usual Ramanujan tau-function' and the proposed statistics 
assert that 

(1.1) Nlim j x: Op E] = 2 sin2OdO 
xoo0 7r(X) 7f 

for Xp = 2cos(Op) and any Jordan measurable E C [0, 7]. [7r(x) is the usual 
counting function for the primes.] 

The corresponding assertion for Xp itself will then read: 

(1.2) limN[ d< XpEE] -1 f 
x-*o 7 ~(X) 27r J 

for E C [-2, 2]. In this form, the proposed distribution coincides with the 
so-called Wigner semicircle law familiar from the study of spectra of random 
Hermitian matrices (cf. [1, 2, 21, 22, 29, 36] for the proper perspective). 

Lehmer looked at Xp for p < 10000 and found fairly good agreement with 
(1.1)-(1.2). Such agreement is important partly because of Serre's observation 
that (1 .1) would follow, not only for A, but also for more general automorphic 
representations 7r on GL2(A), anytime the Langlands L-functions L(s, Symk) 
of the symmetric powers of i have good holomorphy properties on {Re(s) > 1 } 
(cf. [33, 37, 18] and, more recently, [4, 7, 25, 27, 28]). (Any exceptional cases 
should reduce to [10].) 
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An alternative way of suggesting that (1.2) typically holds was recently found 
by Sarnak [31]. His method, which is unconditional, rests on taking a kind of 
average over 7r and exploits the Selberg trace formalism for PSL(2, E) a la 
[11, 12, 32]. One finds an interesting interplay between p and 2t (cf. [3] for 
some related ideas). 

Our primary objective in this paper is to extend [19] to the case of Maass 
waveforms. We will do this by making an empirical test of (1.1)-(1.2) [and 
equation (1.5) below] in a variety of cases wherein if corresponds to a run-of- 
the-mill Maass waveform of weight zero on PSL(2, 2)\H. (The observation 
of Serre will thus apply.) 

In classical terms, we propose to study functions 
00 

Y)~~~ cos(2nrnx) (1.3) 0o(z) =E nY cy112Ki{R(27rny) --- 

n=1 Isin(271nx)J 
on PSL(2, Z)\H such that [12, 20, 34] 

(1.4a) ~ o(Tz) = (o(z) for T e PSL(2, Z), 

(1.4b) Y2(xx + Oyy) + (I +R2)o = 0 for z C H, 
00 Cn1 

(1.4c) E 1n 2s for s > , 

and shall seek to prepare extensive lists of cp-values, whose statistics we shall 
then proceed to analyze directly. 

For ?o of this type, the analog of the Ramanujan-Petersson conjecture asserts 
that 

(1.5) Icpl<2. 

This estimate remains unproved. The best (unconditional) estimate presently 
available (1991) says that 

(1.6) lcpl < p1/5 + p- 1/5 

(cf. [4, 7, 24, 26]). (See [27, Theorem 4] and [25, pp. 436-438, 433 (Theorem 
4)] for several improvements of a probabilistic nature.) 

Before continuing, it should be stressed that implementation of the proposed 
empirical test of (1.5) and (1.1) is by no means trivial. 

In fact, until fairly recently, there were major difficulties associated with 
computing the eigenvalues 4 + Rk themselves, particularly when Rk exceeded 
25 or so. Even in smaller cases, computing cp for p > 7 (!) seemed very 
problematic. 

Part of these difficulties were successfully addressed in [14, 15]. Indeed, it 
is now possible to reliably determine2 not only the eigenvalue, but also the first 
few Fourier coefficients cn in (1.3) for R-values ranging out to 500 or so. The 
number of "good" coefficients scales something like 2 + I R. (See [12, Appendix 
C] for a glimpse of the situation prior to [14, 15].) 

Having reached this stage, the next step is obviously one of "refining things" 
so as to allow the systematic computation of significantly larger numbers of 
cp-values (for each Rk)- 

2To 5 or more places. 
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Currently, the only published work in this direction is that of Stark [35]. 
Though very suggestive, Stark's technique suffers from three drawbacks: 

(A) the method was tested only for relatively small R-values (compare [12, 
p. 729]); 

(B) Stark's subroutine for KiR(X) needs to be applied outside its demon- 
strated region of validity [35, p. 266, paragraph 3]; 

(C) the method does not seem to include sufficient internal checks on the 
accuracy of the computed cp-values, particularly for larger p (cf. [35, pp. 266 
(bottom), 268 (middle)]). 

In order to develop a "firmer" cp-algorithm, we therefore decided to make 
our own investigation of Stark's main idea (focussing, in particular, on any 
subtleties that occurred). 

Sections 4 and 5 will contain a brief report on the outcome of our experiments 
-plus a general description of the (production) algorithm that we ultimately 
implemented. 

Prior to that time, we will simply proceed as if there were no major problems 
expanding Stark's original idea into some type of algorithm capable of comput- 
ing both Rk and the first 7z(104) cp's out to 9-10 places. This possibility was 
alluded to in [35, pp. 268 (middle), 266 (top)]. 

Incidentally: to help get the main iteration started, it is understood that one 
may need to use the data in [14] or [15, Chapter 2] as an 0-order approximation 
(for each Rk that we consider). Compare [35, p. 266 (lines 5-8)]. 

2. CONCERNING HECKE OPERATORS 

Recall that (0 satisfies (1.4a)0(1.4,). Condition (c) is just another way of 
saying that 

(2.1) Tn[o](=Cn(o 
where Tn is the familiar Hecke operator 

(2.2) Tn[f]- I E E f( az+b) on PSL(2, Z)\H 
ad=n O<b<d 
d>O 

(cf. [34] or [23] modulo a slight change in normalization). This fact is largely a 
reflection of the basic multiplicative property of Tn; i.e., 

(2.3) TnTm 5E TnmId2 
dI(m, n) 

In particular, one checks that 

(2.4) CnCm 5 Cnm/d2 
dI(mr n) 

The identities implicit in (2.4) are very important and need to be constantly 
kept in mind in what follows. Note, for instance, that 

c(mn) c(m)c(n) for (m, n) = 1, 

C(p2) = C(p)2 - 1, 

c(p3) = c(p)3- 2c(p), 

C(p4) = C(p)4 - 3c(p)2 + 1 

c(p5) = c(p)5- 4c(p)3 + 3c(p). 
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When one is "sitting" exactly on (0, equation (2.4) holds perfectly. In nu- 
merical work, however, there are always errors in R and c, to contend with. 

To pave the way for our later discussion in ??4-5, it is helpful to use a 
simple (but loose) example to illustrate how the relations embodied in (2.4) can 
be turned around to help one "zero in" on the correct data for f . 

To start with, we assume that R is known at least approximately (say from 
[14]). In the Fourier expansion (1.3), we suppose that the "harmonics" with 
n > N contribute terms of (relative) order 10-14 at most, at least for y > 2 v3. 

[As usual in this business, it is helpful to renormalize any KiR(X) terms by 
multiplying through by exp(fR). We tacitly assume this has been done. We 
also let 9 represent the standard fundamental polygon for PSL(2, Z)\H.] 

Fundamental to Stark's method is a certain nonlinear system of equations 
in {c2, C3, . . ., CN} 3, which one seeks to solve by iteration. (This is where 
an approximate knowledge of C2, C3, ... , CN comes in handy.) The system 
(9') has R as an input parameter and is (essentially) obtained from (2.1) by 
neglecting those terms in (1.3) deemed to have order less than 10-14 on 7 
(cf. [35, pp. 265 (line 22), 266 (lines 5-8)]). 

To the extent there are errors in R, there will be corresponding uncertainties 
in c2, C3, ..., CN. 

For the sake of argument, suppose that 17 < N < 32 (say). 
Our method for "zeroing in" on the correct (0-data basically consists of little 

more than minimizing some functional like 

(2.5) max[lc(33) - c(3)c(1)1, Ic(34) - c(2)c(17)1, Ic(35) - c(5)c(7)1] 

with respect to R. Here, since N < 33, one needs to explain precisely what is 
meant by c(33), c(34), c(35). These numbers are simply auxiliary functions 
of the solution data {C2, c3, ... , CN }, which are obtained by rewriting (2. 1 ) as 

(2.6) c = Tn[q'](zo) 

and then substituting a suitable value for z0. In each case, qi is understood to 
be truncated after n = N, and the relevant points in (2.2) "tossed back over" to 
within S. 

To the extent that (2.5) can be "brought down" to something like 10-14, 
one is inclined to suspect that Rcritical must be very close to the true eigenvalue 
(i.e., Rk) . [At a random R, there is simply no a priori reason for c(33) to be 
exactly c(3) * c( 11) . Accidents do occur, but a simultaneous accident at 33, 34, 
35 is well nigh impossible!] 

Once a successful "minimization" has been achieved, the cp-values for p > N 
are then determined by repeating the procedure used for c(33), c(34), c(35). 

This is the story in a nutshell. 
As N and R grow, one naturally needs to employ different composite n's 

in (2.5). It is in the use of such n that our approach differs (most significantly) 
from that of Stark [35]. 

Incidentally: in (2.6), note that varying z0 furnishes an additional check on 
any proposed (0-data. 

3Call it (')- 
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For later use, we remark that 

00 1 
(2.7) L(s) = 1: nS = n r 1- cpp-S +p-2s 

n=1 P 

is actually an entire function satisfying 

(2.8) G(s)L(s) = rjG(1 - s)L(I -s), 

where 

J = +1 , G(s) = -SF 
s + ) s - 

2 for even (o, 

q 
= - 1, G(s) =7-sFs + I + iR) r(5 + I- 

iR) for odd (. 

The proof is a standard application of Mellin transforms to (1.3) and (1.4). 
One exploits [38, p. 388(8)] along the way. 

3. STATEMENT OF RESULTS 

Our primary goal was to study the first five even and odd Maass waveforms 
on PSL(2, Z)\H, as accurately as possible, for p ranging out to 10000. 

Since the K-Bessel routine in [14] has an intrinsic accuracy of about 11-12 
places (for R < 100), one would naively expect problems to occur if we tried 
to obtain more than this number of places in R and cp . In fact, since cp 
is determined using (2.6), it is clear that the accuracy must gradually begin to 
taper off as p grows (due to the increasing amount of roundoff error in the 
numerator). In line with this, we made a very slight change in the procedure 
outlined in ?2; viz., we replaced 10-'4 by 10-12. 

In addition to testing the first five even and odd Rk's, we thought it would 
be interesting to see if our method could still be applied successfully in a couple 
of cases with somewhat larger R. For this purpose, we chose two even values; 
one near R = 50, the other near 125. 

The total number of production runs was thus 12. 
In this connection, however, it should be stressed that the production stage 

is reached only after C2, C3, ... , CN, R are computed to sufficient accuracy. 
Achieving this, basically requires a number of test runs, each aimed at trying to 
"successfully" minimize (2.5) through a sequence of steps reminiscent of regula 
falsi. [Ultimately achieving the desired accuracy is not a foregone conclusion, 
since system (59) tends to become rather sensitive as R increases. Suffice it to 
say, though, that the only place a little persistence was really needed was with 
the two larger R. Further details can be found in ?4.] 

The R-values we used to get the whole process started were taken from [ 14] 
and read as in Table 1 (next page). To speed things up in solving (5"), we did 
not hesitate to use the approximate values of the first few C, found in [ 14] or 
[12, Appendix C]. We mentioned this point earlier in ? 1. 

For the production runs, we then used Table 2 (next page). 
In each case, our tests with the analog of (2.5) suggested that the indicated 
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TABLE 1 

A 13.779751 H 9.533695 
B 17.738563 I 12.173008 
C 19.423481 J 14.358509 
D 21.315796 K 16.138073 
E 22.785909 L 16.644259 
F 47.926558 
G 125.313840 

even odd 

TABLE 2 

case R N p < x 7(Xj 
A 13.7797513518907 9 p < 10000 1229 
B 17.7385633810580 9 p < 10000 1229 
C 19.423481470828 10 p < 10000 1229 
D 21.3157959402041 10 p < 10000 1229 
E 22.785908494190 10 p < 10000 1229 
F 47.926558330595 20 p < 10000 1229 
G 125.3138401770 32 p < 5000 669 
H 9.5336952613536 9 p < 10000 1229 
I 12.1730083246801 9 p < 10000 1229 
J 14.358509518259 9 p < 10000 1229 
K 16.138073171521 9 p < 10000 1229 
L 16.6442592018999 9 p < 10000 1229 

R-value should be accurate to within 
3 x 10-13, if 13 places are shown, 
2x 10-12, if 12 places are shown and R <23, 
3x 10-12, incaseF, 
2x 01-01, incase G. 

Tables of cp-values were then prepared. Our spot checks (using both com- 
posite n and variation of z0) suggest that the accuracy we obtained is quite 
good: 9-10 places initially, dropping off to 8-9 for p around X. (Inciden- 
tally: there was generally 9-10 place agreement between [35, Table 1] and case 
A.) 

In no instance were any counterexamples to Ramanujan-Petersson detected. 
Readers interested in scanning the actual cp-values should refer to the Sup- 

plemental Listing available directly from the authors. 
On the matter of "extreme" values, Table 3 holds. These values should be 

compared with the numbers found by D. H. Lehmer for z(p): 

maxp< 1p = 1.961, min I4PX = .00062. 

Finally, to check (1.1) and (1.2), we made some histograms [using the values 
contained in the Supplemental Listing]. These are included as Figures 1-6 in 
the Supplement section at the end of the issue. We are grateful to Andrew 
Odlyzko for his assistance with this. 
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TABLE 3 
A c(8317) = 1.984 c(9539) = .000540 

c(7687) = -1.987 c( 97) = -.003257 
B c(4217) = 1.984 c(7583) = .000637 

c(7451) = -1.962 c(8329) = -.000357 
C c(2699) = 1.969 c(4703) = .000576 

c(8543) = -1.980 c(6277) = -.004243 
D c(1201) = 1.973 c(1741) = .001437 

c(8233) = -1.951 c(9539) = -.000048 
E c(6599) = 1.997 c(6043) = .005829 

c(7451)=-1.978 c( 727)=-.002484 
F c(8629) = 1.990 c(2903) = .002581 

c(4217) = -1.991 c(2953) = -.001902 
G c( 131) = 1.944 c(1381) = .001109 p < 5000 only 

c(3347) = -1.958 c(1451) = -.006469 
H c(3457) = 1.998 c(5953) = .003227 

c(1277) = -1.987 c(3121) = -.000615 --_- 

I c(7517) = 1.993 c( 709) = .001142 
c(5501)=-1.988 c( 601)=-.000066 

J c(7309) = 1.963 c(5009) = .006958 
c(4561) = -1.945 c(7411) = -.000487 

K c(8837) = 1.993 c(23 11) = .002891 
c(9539) = - 1.914 c(7583) = -.002180 

L c(1259) = 1.977 c(8933) = .000010 
c(6211) = -1.994 c( 647) = -.002424 

The agreement with (1.1), (1.2) certainly seems reasonable. 
Out of curiosity, we also tested the individual R-values (but on somewhat 

coarser scales). This gave the results illustrated in Figures 7-18 of the Supple- 
ment. 

In all cases, the agreement (still) seems fairly good. 
The obvious question now is why can't we do p < 105, or maybe even 

p< 106? 

To address this point, we need to first look at the CPU times for our produc- 
tion runs (Table 4 on next page). Since these jobs typically included spot checks 
at about a half a dozen composite n as well,4 the actual time (for obtaining 
just the cp) will be about 10%-15% less. 

CPU times in the range of 1 1-61 hours are, of course, nontrivial. 
The key issue then is how things scale with respect to X (and R) . 
The asymptotics of exp(!!R)K,R(v) are known from [5], say. These asymp- 

totics and the shape of Y make it clear that N must scale something like 
(constant)R. In determining cp by means of (2.6), approximately N(p + 1) 
[independent] K-Bessel calls will be needed. To tabulate cp for all p < X will 

4The form of these n being either 5p or 13p . 
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TABLE 4 
case machine time (in secs.) X 

A Cray2 10103 10000 
B YMP 8151 10000 
C Cray2 12631 10000 
D Cray2 13454 10000 
E Cray2 14039 10000 
F YMP 25718 10000 
G YMP 11791 5000 
H YMP 5812 10000 
I YMP 6861 10000 
J YMP 7441 10000 
K YMP 7820 10000 
L YMP 7887 10000 

therefore require about 

N ZE(p + 1) 2 oX (constant)R XX 
p?X 

calls.5 The essential point is the occurrence of X2/(log X) . Unless the K-Bessel 
calls can somehow be speeded up, raising X by a factor of 10 is going to cause 
the CPU time to go up by something closer to 100. (Expressed differently: two 
hours of CRAY time is one thing, 200 is another!) 

It is here, with the K-Bessel calls, that some major improvement (or restruc- 
turing) seems essential for further progress. 

The routine that we used was simply that of [14, 15]. (We wanted to use 
something well tested!) Though highly stable, this routine requires Gaussian 
quadrature and a deformation of path. [Typical CPU time: .00012 secs.] 

Iterative techniques, or asymptotic expansions, may offer some better pos- 
sibilities (at least in certain ranges). Another idea worth exploring would be 
interpolation. 

4. THE BASIC ALGORITHM IN GREATER DETAIL 

Let g(t) = t-1 + arcsin(l/t) for t > 1 . In line with [5], one knows 
that exp(IR)KiR(v) behaves something like e-R[g(v/R)-71r2] for v > R. It is 
therefore possible to determine relatively easily how big v must be in order to 
guarantee that exp(I R)KiR(v) will be less than 10-14 (say). When v = 27rny, 
as in (1.3), this typically translates into a condition on n of the form 

n > R+lR1 
27ry 

where kt is some modest constant. [For large R, the constant ,u is about 12.] 
If y is known to be at least 2 V"3, taking 

(4.1) n V3 

5To be completely correct, these calls should be subdivided into cases v < R, v - R, v > R. 
For fixed R, the relative proportion of each type remains relatively constant as X - oc . (Calls 
with v < R take the most time...) 
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will then accomplish exactly what was asked for in ?2 with regard to N. (Sim- 
ilarly for 10-12, as used in ?3.) 

As a temporary notation, let 2 denote the point in 7 which is equivalent 
to z under the action of PSL(2, 2) .6 

In our earlier discussion, system (S' ) was intentionally kept a bit vague. This 
was done partly to avoid mentioning that several variants are, in fact, possible. 

To see this, suppose for a moment that R = Rk is known. 
One way of getting a system of equations for {C2, C3, ... , CN} is obvious. 

Simply rewrite (2.1) as (2.6) and then insist that, in forming Tj[(o](zo) according 
to (2.2), the points (azo + b)/d are all given hats. Follow this by replacing q' 
with its truncation after N terms. The resulting system will then make sense 
for any R (and will clearly depend on both R and z0). We will refer to zo 
as the test point. 

To the extent that the denominator remains bounded away from 0, one would 
expect to see (at R = Rk) a final accuracy roughly commensurate with the 
choice of N (cf. (1.5) and (1.6)). Letting the denominator go to 0, however, 
tends to reduce this accuracy by Causing catastrophic cancellation in the numer- 
ator. [Bear in mind here that the early K-Bessel terms are roughly 0(1) in size 
and only accurate to about 11-12 places.]7 For this reason, some care in the 
choice of zo is definitely necessary. 

An alternative system can be obtained by using (2.4) to re-express any cl 
with composite I < N as a polynomial in the cp's (with p < N). One then 
considers (2.6) for prime n (< N) only. This is basically what Stark does (cf. 
[35, p. 266 (paragraph 1)]).8 

This "smaller" system seems especially appropriate on PSL(2, Z)\H. 
In either case, the final format of our system will be 

(4.2) c= T(c), 

where c is a point in IRM, 

rN- 1A 
(4.3) M= - - 

and the component functions Tj of T are all rational. 
Anytime one tries to solve a nonlinear equation like (4.2) by iteration, strange 

things can happen. One need only examine some of the recent literature on 
dynamical systems to be convinced of this. 

In the absence of any kind of "hard" information about T, one simply has 
to expect that: 

(a) there may be multiple solutions; 
(b) the limiting behavior of Tn (co) as n -* oc may depend strongly on the 

choice of (initial point) c0; 
(c) to get convergence, one may have to take c0 rather close to the proposed 

fixed point; 

6The algorithm for finding z is familiar: one simply does the obvious flip-flop between trans- 
lation and inversion. Cf. [30, p. 51 (lines 19-27)]. 

7Readers unfamiliar with catastrophic cancellation may wish to quickly consult ?5, ExanTple 5. 
81n Stark's approach, the denominator T1 [p](zo) is left as p(zo) and is not replaced by 0(20) . 

This is important only if zo f S. Since the (modular) correspondence Tl{z} "lives" on 
PSL(2, Z)\H, our version has the effect of requiring that zo C 9 
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(d) the limiting behavior of Tn (co) may be significantly affected by small 
perturbations in T (e.g., movement in z0). 

Though the "bigger" system is not without interest, we decided to follow 
Stark [35] and concentrate solely on the case of 7r(N)-variables (cf. (4.3)). 

One of the advantages to using the CRAY was that its speed allowed us to 
plot the "trajectories" { Tn (co): n > 1 } virtually instantaneously. 

In the next section, we will present several examples which illustrate points 
(a)-(d). 

The upshot will be that the global situation is not nearly so simple as was 
suggested in [35]. 

In cases where Tn(co) converges, we like to think of the point as having 
made its way into some type of "attracting basin". The problem is, that as the 
dimension M grows, it becomes easier for Tn (co) to get "lost". 

In a certain sense: one wants to "help" Tn (co) find its way (particularly when 
R r Rk). 

Before explaining how we do this, it should be noted that, in defining the 
"smaller" system, declaring n = prime at the very last step was a bit arbitrary. 
Indeed, one can legitimately maintain that 

c2 = T2[q](Zo) c2_ T6[k](Zo) 

(4.4) Tik[q](zo) C3TI [](ZO) 
* = -Tloo](zo) 

T14k O 
, etc. 

C5T1 [(](Zo) C7T1 [ ](ZO) 

should all be considered on an equal footing. 
This adds still another variant to (5), and simultaneously supplies us with 

an important hint. 
The point is this. In numerous cases, one knows (from [14]!) the first few 

cp-values for (z) out to, say, six decimal places. [We will temporarily refer 
to these approximate values as C2, C3, ... , q.] Philosophically speaking, one 
is inclined to believe that there simply must be some way of exploiting this 
knowledge to help keep Tn(co)s "nose" pointed in the right direction. (One 
seeks to impose a kind of potential field.) 

In this context, one naturally assumes that any c0 we start with will have 
components at least as good as C2, C3, ... , cq . With this in mind, one way of 
introducing a kind of "restraining force" [to prevent divergence] would be to 
replace 

_ T2[q,](Z0) 

=T1 [q,](z0) 

in (2.6) by 

C2= that quotient in (4.4) which lies closest to C2 

This choice suffers, however, from the defect of wanting to pull c2 too much 
in the direction of c2 (which is, after all, not the exact answer). To rectify this, 
it seems better to "sit on the particle itself' and go with: 

(4.5) c2 = that quotient in (4.4) which lies closest to c2. 

Note that the right-hand side is, in fact, a legitimate function of c. (This 
requires a moment's thought!) 
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To prevent "runaways", one can erect a kind of "fence" by taking 

(4.6) 2 { RHS of (4.5), if that lies within 5 units of c2, 

(2, otherwise. 

Similarly for the other cp (with p < q). 
To avoid confusion in what follows, we will let (59) denote the original 

"smaller" system. The variants associated with (4.5) and (4.6) are then denoted 
by (59*) and (59**). 

Once a system has been decided upon, the basic procedure is essentially that 
outlined in ?2. 

In practice, one minor irritation with both (59*) and (5**) is that T is 
no longer real-analytic [especially with respect to R]. This allows the limiting 
trajectory to exhibit occasional nonsmooth behavior, which, in turn, can ad- 
versely affect the minimization procedure being used in connection with (2.5) 
(cf. ?3, paragraph 5). The problem is basically one of trying to get c0 as close 
as possible to the true coefficient vector (cf. point (c)). 

Even when the "pump is primed" with data from [14], the process of com- 
puting {Rk, c2, C3, ... , CN} to sufficient accuracy can be time-consuming. As 
R and M grew, it was found to be increasingly difficult to get by with just 
(Y). [One would typically try many z0 and have almost no luck finding the 
right attracting basin!] To a lesser extent, the same thing happened with (5*). 
In order to treat R = 47.926558 and 125.313840, passing to (59**) seems to 
be the key. 

Even then, depending on the quality of the initial data, great sensitivity with 
respect to z0 can still occur. At R = 125.313840, one needed to try something 
like 20 different test points (before finally achieving success). 

To accelerate the process of determining {Rk, C2, C3, ... , CN}, we made a 
slight modification in the approach outlined in ?2. Namely: once an approxima- 
tion better than c0 became available (from one of our runs), we did not hesitate 
to use it as the "new" c0. These updates were then repeated, as necessary. (We 
also found it helpful to run a variety of test points simultaneously.) 

At some point, it might be useful to implement these ideas in a separate code. 
For purposes of ?3, however, we were content to do everything "by hand". 

For simplicity, we decided to use 5** throughout. 
Prior to making the final production run at R = Rk , we generally liked to run 

two or three mini-versions (out to p = 103 or so) using significantly different 
test points. These runs always included six composite n (a la footnote 4) plus 
a direct calculation of T(c) - c. The case displaying the "best" behavior on 
these two items was the one we then chose for our full-scale run. 

[The mini-runs also provided a further form of "insurance" in that it was 
always very satisfying to be able to watch the cp-values (for p > N) consistently 
agree to 9-10 places, no matter how disparate the z0 were!] 

5. SOME SUBTLETIES IN THE ITERATION 

The task of setting up the production runs for ?3 was very instructive. By 
working interactively through the various steps, one was able to gain important 
insight into the (dynamical) behavior of 5, 5*, 5**. 

In several cases, prompted by what was seen, it was natural to push things a 
bit further just for their own sake. 
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Our aim in this section will be to report on some of the more interesting 
things we found (see [16] for a fuller list). 

Before doing this, however, we need to preface things with a number of 
preliminary remarks. 

First and foremost: we have not really sought to make any kind of rigorous, 
all-inclusive analysis of 5, 5*, S . Our use of these systems has basically 
been only as a means to an end. On the matter of rigor, it is the usual story; the 
computer may suggest (to 12 decimal places!) that T has a fixed point at p, 
but that does not constitute a proof. Accordingly, any phenomena depicted in 
our examples must9 technically be regarded as conjectural. We hasten to add, 
however, that T is basically rational with respect to c (cf. (4.3) and (4.4)). 
This fact, combined with the existence of a variety of very similar examples, 
leads us to believe (in each instance) that the properties highlighted are, in fact, 
quite rigorous. 

Secondly: it has been more or less implicit in our earlier discussion that, 
when R = Rk, the transformation T for case (5?2) does have an actual fixed 
point someplace very close to the cp-vector for Pk (Z) . In what follows, we will 
simply assume that this is so. 

[In practice, the only cases which give one pause are those where the prevail- 
ing flow pattern seems to be repellent. Here, however, a little numerical differ- 
entiation with respect to c will (in all likelihood) suffice to settle the matter. 
The problem is essentially one of computing the Jacobian matrix of T(x) - x.] 

For convenience, we will generally engage in a slight abuse of language and 
make no distinction between the fixed point and the actual go-data. 

Our third point concerns 5* and 5'** . The physical analogies used earlier 
were intended mainly as motivation. To a large extent, the expressions in (4.5) 
and (4.6) can only be regarded as ad hoc. The thing to keep in mind, though, 
at (say) R 125 is that the problem confronting us was basically one of "cau- 
tiously groping through the fog" so as to be able to successively improve the 
accuracy in our cp-values (after starting with the partial result found in [14]). 
We thus tend to see Y** more as a kind of device than anything else [a device 
which is applied only near Pk !]. 

Though successful at R = 125.313840, it was not a case of running it once 
and then, presto, there was the answer. What was needed was a willingness to 
test a variety of z0 and to make updates in c0 as one moved along. In this 
connection we often found it helpful to have the machine display the results of 
the best iteration [as measured by (2.5)] and not simply those of the last. (If 
5?* had been used instead, similar remarks would still apply.) 

The fourth, and final preliminary, is simply a reminder that the nature of 
a fixed point p is, to a large extent, characterized by the eigenvalues of the 
Jacobian matrix JT(p). For good convergence, one wants these eigenvalues to 
have modulus less than 1. 

[In specific cases, if worst comes to worst, one can of course seek to calculate 
JT(c) numerically. This is not unreasonable when T is rational.] 

To avoid ambiguities below, let To be the T-transformation associated with 
system (S9') *10 

9At least for now. 
10Note too that any To-fixed point is automatically one for 2'* (but not conversely)! 
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Example 1. The following data came from a job of type (5?9**) with parameters 
as shown. The vector (co(p)) is accurate to about eight places. On the next 
level, the first c(p)-vector is the answer after 400 iterations (of T) . The middle 
column shows what one then gets after an application of To. The final column 
lists the difference between the two. (The largest difference, i.e., 1.7E-10, will 
be called the To-indicator.) Incidentally: in this example, the size of the analog 
of (2.5) was about 4.2E-1 1. 

Parameters for (4.3) and (4.6) 

N= 32, M= 7(N) = 11, c = 10-4, q =13 

R= 125.313840177000 ICOUNT: 400 MAX: 400 
FOR X= 0.0570000000 Y= 0.9230000000 
and initial values: 
CO( 1)= 1.000000000000 
CO( 2)= -0.332695680000 
CO( 3)= 1.056573770000 
CO( 5)= -0.946096480000 
CO( 7)= 0.324132110000 
CO( 11)= 0.040097140000 
CO( 13)= 0.479453980000 
CO( 17)= 1.254988810000 
CO( 19)= 0.893140170000 
CO( 23)= 1.605561140000 
CO( 29)= 0.856710520000 
CO( 31)= -0.250878130000 

C( 1)= 1.000000000000 1.000000000000 0.OOOOE+00 
C( 2)= -0.332695683096 -0.332695683078 -0.1845E-10 
C( 3)= 1.056573773111 1.056573773281 -0.1700E-09 
C( 5)= -0.946096480439 -0.946096480532 0.9242E-10 
C( 7)= 0.324132112930 0.324132112918 0.1231E-10 
C( 11)= 0.040097144250 0.040097144250 0.2220E-15 
C( 13)= 0.479453986303 0.479453986287 0.1646E-10 
C( 17)= 1.254988815396 1.254988815396 0.1421E-13 
C( 19)= 0.893140180104 0.893140180104 0.4974E-13 
C( 23)= 1.605561152662 1.605561152662 0.7105E-14 
C( 29)= 0.856710527884 0.856710527884 0.4619E-13 
C( 31)= -0.250878136751 -0.250878136751 -0.3197E-13 

the (2.6) denominator was: .6331E00 

With (co(p)) accurate to 8 places, one might think that the same job run 
with (5) would converge. This did not happen, however. The fact is, after 
n = 24 or so, the point Ton(co) basically became "lost" (and began to wander 
aimlessly). 

Switching to 11-place co-data made very little difference; 24 just became 29. 
This shows how sensitive things can be (and provides some indication of the 

utility of 9**) . 
In both 5"-jobs, there was a steady growth in the size of (2.5)11 prior to 

things getting completely lost. We are inclined to speculate that the vector 
And in the To-indicator. 
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TABLE 5 

ITER. T0-indicator (2.5) analog T0-indicator (2.5) analog 
100 9.8E-8 7.7E-8 3.7E-3 4.6E-3 
400 1.7E-10 4.2E-11 2.lE-10 2.3E-l0 
800 1.7E-10 4.1E-11 2.1E-l0 2.3E-l0 

system 5** system S* 
with eight-place co(p) 

TABLE 6 

R = 125.313840 
coo(2) = -0.332696 
coo(3) = 1.056574 
coo(5) - -0.946097 
coo(7) = 0.324132 

coo( l) = 0.040097 
coo(13) = 0.479454 

coo(17) = 1.254990 

coo(19) = 0.893140 
coo(23) = 1.605562 
coo(29) = 0.85671 

coo(31) = -0.25088 

(c(p)) must simply represent some type of repellent fixed point for To. [We 
did not compute JT0 (c), however.] 

For the original (eight-place) co(p), system (59*) yields results very similar 
to those of (y?**), but with less accuracy. 

In this connection, Table 5 tells an interesting story. 
To give some indication of how much additional accuracy (3**) ultimately 

provided, we remark that the original data taken from [14] was simply Table 6. 
[The eight-place vector (co(p)) used in Table 5 is update #2.] 

Finally, let: 

v= {zo E H: To has an attractive fixed point 
at the y-data for R = Rk = 125.3138401770}. 

Since none of the many 5-jobs that we ran with (coo(p)), or with 8-11 place 
(co(p)), ever managed to converge properly,'2 we suspect that v is rather 
sparse. (It should also be borne in mind here that for 19 earlier choices of zo, 
Y** failed to converge properly as well.) 

One might also ask, for given z0 (and, say, R = 125.3138401770), how big 
a set 

xzo _ {p E Rlm: lim Ton(p) does not exist 

is (cf. our earlier remarks about wandering aimlessly for n > 24, 29). 

121.e., to the correct -data. 
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Example 2. Passing to (5*') or (G5**) does not always yield improved dynam- 
ics. 

Type (59) N= 20, M= 7r(N) = 8 

R= 47.926558330590 ICOUNT: 265 MAX: 400 
FOR X= 0.1280000000 Y= 0.7195000000 
and initial values: 
CO( 1)= 1.000000000000 
CO( 2)= 0.511058000000 
CO( 3)= 1.700681000000 
CO( 5)= -1.358583000000 crude data 
CO( 7)= 0.028926000000 from [14] 
CO( 11)= -0.295543000000 
CO( 13)= -0.087480000000 
CO( 17)= 0.000000000000 
CO( 19)= 0.000000000000 

( with attractive behavior throughout 
as measured by the successive differences J 

C( 1)= 1.000000000000 1.000000000000 0.OOOOE+00 
C( 2)= 0.511058433834 0.511058433833 0.1208E-12 
C( 3)= 1.700681262519 1.700681262519 0.7816E-13 
C( 5)= -1.358582751399 -1.358582751399 0.6537E-12 
C( 7)= 0.028925945761 0.028925945761 -0.2591E-12 
C( 11)= -0.295544126038 -0.295544126039 0.5276E-12 
C( 13)= -0.087366865379 -0.087366865379 0.3979E-12 
C( 17)= 0.937817000442 0.937817000442 0.2878E-12 
C( 19)= 1.795503232584 1.795503232584 0.2061E-12 

(2.6) denominator was: - .4314EOO 
final value of the (2.5) analog: 5.6E- 11 
To-indicator: 6.5E-1 3 

Even when the iteration count was only about 100, one was finding To- 
indicators and (2.5) values of about 10-8. There is little doubt that, for this 
test point, the q'-data is To-attractive. 

Surely, then, running (S*) should produce the same answer. Not so! 

Type (5i2*) 

R= 47.926558330590 ICOUNT: 800 MAX: 800 
FOR X= 0.1280000000 Y= 0.7195000000 
and initial values: 
CO( 1)= 1.000000000000 
CO( 2)= 0.511058000000 
CO( 3)= 1.700681000000 
CO( 5)= -1.358583000000 
CO( 7)= 0.028926000000 
CO( 11)= -0.295543000000 
CO( 13)= -0.087480000000 
CO( 17)= 0.000000000000 
CO( 19)= 0.000000000000 
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(with repellent behavior before I 1 50 0 
and attractive behavior after I . 120 
as measured by the successive differences / 

C( 1)= 1.000000000000 1.000000000000 .OOOE+00 
C( 2)= 0.376415454703 0.885343665274 .533E-14 
C( 3)= 1.188036394793 1.337190554675 .OOOE+00 
C( 5)= -0.820559895739 -1.797243672303 .355E-14 
C( 7)= 0.215736965622 0.215736965622 .799E-14 
C( 11)= -1.168200588376 -1.168200588376 .711E-14 
C( 13)= -0.360588849565 -0.360588849565 .355E-14 
C( 17)= 0.994237766499 0.994237766499 .142E-13 
C( 19)= 1.247090592260 1.247090592260 .711E-14 

(2.6) denominator was: - .3023E00 
largest successive difference: about 10-7 at I = 200 

about 10-12 at I = 300 

In this batch, we have changed the format so that the third column displays 
the absolute value of the last successive difference. The middle column contin- 
ues to be the To-image of the first. As the numbers show, things have clearly 
stabilized (with respect to T) but not at a T0-fixed point. 

So how did 5?* escape from p ? The answer would seem to be that, for 
at least one choice among the various quotients in (4.4), etc., the go-data is a 
repellent fixed point of rather strong intensity. 

Going over to 59** [with q = 13 and cs = 10-3] did not help. This yielded 
only a random wandering within a small neighborhood of the true y-data; hence 
a divergence. (Note, too, the relevance of the third preliminary remark.) 

We should also mention that, once co(p) started to differ appreciably from 
the true q,-data for at least one small p, we were unable to come up with a 
single instance of To-convergence (after 104 iterations) in over 50 test cases. 
This illustrates point (c) in ?4.13 

By switching over to X = .234, Y = .7195 and modifying the vector (co(p)) 
with appropriate ? signs, it is possible to produce at least two fixed points 
for To in addition to the fixed point at the go-data (cf. [16]). The former are 
presumably attractive; the latter repellent. 

In one of the attractive cases, Ramanujan-Petersson is clearly violated. (The 
behavior reported in [35, pp. 266 (bottom), 268] thus seems to be atypical.) 

Example 3. The following 59-data came from some jobs we ran to investigate 
Stark's assertion [35, p. 266 (lines 9-11)] that, for small R, it is possible to 
start literally from nothing. 

13Each test run took about 28 seconds on the CRAY-2. 
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N= 20, M= 7r(N) = 8 

R= 13.7797513518907 ICOUNT: 11 MAX: 100 

FOR X= 0.1000000000 Y= 1.0050000000 

and initial values: 

CO( 1)= 1.000000000000 
CO( 2)= 0.000000000000 
CO( 3)= 0.000000000000 
CO( 5)= 0.000000000000 

CO( 7)= 0.000000000000 
CO( 11)= 0.000000000000 
CO( 13)= 0.000000000000 
CO( 17)= 0.000000000000 
CO( 19)= 0.000000000000 

(with rapidly attractive behavior throughout) 

C( 1)= 1.000000000000 1.000000000000 0.OOOOE+00 

C( 2)= 1.549304477941 1.549304477941 0.OOOOE+00 

C( 3)= 0.246899772454 0.246899772454 0.OOOOE+00 

C( 5)= 0.737060385348 0.737060385348 0.OOOOE+00 

C( 7)= -0.261420075765 -0.261420075765 0.OOOOE+00 

C( 11)= -0.953564652617 -0.953564652617 0.OOOOE+00 

C( 13)= 0.278827029162 0.278827029162 0.OOOOE+00 

C( 17)= 1.307341714533 1.307341714533 0.OOOOE+00 

C( 19)= 0.092558582508 0.092558582508 0.OOOOE+00 

(2.6) denominator was: .9699E00 
final value of the (2.5) analog: 0 

R= 13.7797513518907 ICOUNT: 9 MAX: 100 

FOR X= 0.1500000000 Y= 1.0050000000 

and initial values: 

CO( 1)= 1.000000000000 

CO( 2)= 0.000000000000 

CO( 3)= 0.000000000000 

CO( 5)= 0.000000000000 

CO( 7)= 0.000000000000 
CO( 11)= 0.000000000000 

CO( 13)= 0.000000000000 

CO( 17)= 0.000000000000 

CO( 19)= 0.000000000000 

(with rapidly attractive behavior throughout) 

C( 1)= 1.000000000000 1.000000000000 0.OOOOE+00 

C( 2)= -1.122947942450 -1.122947942450 0.OOOOE+00 

C( 3)= -0.389949016161 -0.389949016161 0.OOOOE+00 

C( 5)= -0.523189739313 -0.523189739313 0.OOOOE+00 

C( 7)= 0.507684269216 0.507684269216 0.0000E+00 

C( 11)= 0.609969290410 0.609969290410 0.OOOOE+00 

C( 13)= 0.044620901213 0.044620901213 0.OOOOE+00 

C( 17)= -0.049027146897 -0.049027146897 0.OOOOE+00 

C( 19)= 0.637093574481 0.637093574481 0.OOOOE+00 

(2.6) denominator was: .715 1 E00 
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R= 13.7797513518907 ICOUNT: 800 MAX: 800 
FOR X= 0.1200000000 Y= 0.6000000000 
and initial values: 
CO( 1)= 1.000000000000 
CO( 2)= 0.000000000000 
CO( 3)= 0.000000000000 
CO( 5)= 0.000000000000 
C0( 7)= 0.000000000000 
CO( 11)= 0.000000000000 
CO( 13)= 0.000000000000 
CO( 17)= 0.000000000000 
CO( 19)= 0.000000000000 

(with repellent behavior before I 20 
then steadily attractive afterwards J 

C( 1)= 1.000000000000 1.000000000000 0.OOOOE+00 
C( 2)= -35.836533862512 -35.836533862514 0.1819E-11 
C( 3)= -36.625899101444 -36.625399101446 0.2046E-11 
C( 5)= -73.310502980020 -73.310502980024 0.4093E-11 
C( 7)= -31.181855497617 -31.181855497619 0.1705E-11 
C( 11)= -1.099116370964 -1.099116370963 -0.2629E-12 

C( 13)= -42.913663228011 -42.913663228013 0.2728E-11 
C( 17)= 77.526863693281 77.526863693285 -0.4547E-11 
C( 19)= 18.904232881022 18.904232881023 -0.9095E-12 

(2.6) denominator was: .1 690E00 

R= 13.7797513518907 ICOUNT: 800 MAX: 800 
FOR X= 0.1250000000 Y= 0.6000000000 
and initial values: 
CO( 1)= 1.000000000000 
CO( 2)= 0.000000000000 
CO( 3)= 0.000000000000 
CO( 5)= 0.000000000000 
CO( 7)= 0.000000000000 
CO( 11)= 0.000000000000 
CO( 13)= 0.000000000000 
CO( 17)= 0.000000000000 
CO( 19)= 0.000000000000 

(with attractive behavior throughout) 

C( 1)= 1.000000000000 1.000000000000 O.OOOOE+00 
C( 2)= 1.549304477941 1.549304477941 -0.6963E-12 
C( 3)= 0.246899772454 0.246899772455 -0.9255E-12 
C( 5)= 0.737060385349 0.737060385351 -0.1577E-11 
C( 7)= -0.261420075764 -0.261420075763 -0.8278E-12 
C( 11)= -0.953564652617 -0.953564652617 0.2132E-13 
C( 13)= 0.278827029166 0.278827029167 -0.9592E-12 
C( 17)= 1.307341714536 1.307341714534 0.1734E-11 
C( 19)= 0.092558582508 0.092558582508 0.4245E-12 

(2.6) denominator was: - . 1467E00 
final value of the (2.5) analog: 4E-12 
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In batches 3 and 4, note that the test points are rather close together. Taking 
X = .124 gave something which, after 800 iterations, was trying to converge 
to the go-data but was still off by up to 5E-2. [Not surprisingly perhaps, the 
convergence in batch 4 was a bit on the slow side: the (2.5) analog had values 
4.8E-2 and 6.8E-8 at I = 100, 400. Something like E-Il was achieved only 
around I = 600.] 

To get a better handle on this type of situation, it is tempting to make a 
series of further runs (with, say, ICOUNT = 25000) at a large number of 
intermediate X. 

Let case 1 refer to Y = .6000 and case 2 to Y = 1.005. In both cases, one 
easily checks that (o (x + iY) has constant sign on the given x-interval. This is 
important because it shows that whatever subtleties are present are not merely 
caused by passing through a zero of o . 

By running jobs with a variety of input vectors, one quickly confirms that 
the go-data goes from being T0-repellent at one endpoint to T0-attractive at the 
other. 

The transition points occur at about .1238 and .12877, respectively. 
The iterative behavior near these X should prove interesting (if only for the 

fact that one of the eigenvalues of JTO (go) now has modulus very close to 1). 
Taking X = .1238 and co(p) _ 0 in case 1 produces output which shows 

no sign of convergence even after 500000 iterations. Yet, in taking X = 
.1238 + (.0001)n, n :$ 0, we find output which is already quite stable at 
I = 25000. The resulting limit vectors continue to display the same lopsided 
behavior seen in batches 3 and 4. Given the size of the "gap", there is little 
doubt that someplace near X = .1238, a point of true divergence must occur 
(for this choice of co(p)) . 

The dynamics in case 2 were significantly different. As X approached .12877, 
the matrix JTO((p) - I seemed to become singular, or else very nearly so (in 
marked contrast to case 1). In line with some standard structure theorems in 
several complex variables, the zero-set of To(c) - c must (therefore) be expected 
to exhibit a kind of branching behavior as X passes through .12877. Our 
experiments with I = 25000 tended to confirm this-in that, what was found, 
was a kind of criss-cross in the attractive and repellent fixed points (as opposed 
to an actual jump). 

Example 4. Another job of type (5?) . In this case, R is (obviously) not an 
eigenvalue. 

N=20, M= z(N)=8 

R= 5.000000000000 ICOUNT: 19 MAX: 400 

FOR X= 0.1890000000 Y= 0.8650000000 

and initial values: 

CO( 1)= 1.000000000000 

CO( 2)= 0.000000000000 

CO( 3)= 0.000000000000 

CO( 5)= 0.000000000000 

CO( 7)= 0.000000000000 

CO( 11)= 0 .000000000000 

CO( 13)= 0.000000000000 

CO( 17)= 0.000000000000 

CO( 19)= 0.000000000000 
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(with rapidly attractive behavior throughout) 

C( 1)= 1.000000000000 1.000000000000 0.OOOOE+00 

C( 2)= 3.980104536067 3.980104536067 0.OOOOE+00 
C( 3)= -4.353479845878 -4.353479845878 0.OOOOE+00 
C( 5)= 3.747186760026 3.747186760026 0.OOOOE+00 
C( 7)= -2.495431559510 -2.495431559510 0.0000E+00 
C( 11)= 0.424977267960 0.424977267960 0.OOOOE+00 
C( 13)= 3.269324551156 3.269324551156 O.0000E+00 
C( 17)= -4.379743415131 -4.379743415131 0.OOOOE+00 
C( 19)= -8.749979373183 -8.749979373183 0.OOOOE+00 

the (2.6) denominator was: .1 060E- 1 

Example 5 [illustrating catastrophic cancellation]. In the following 5'-job, the 
4th column displays the effect of placing absolute value signs on all the various 
harmonics [from (1.3)] which enter into the (2.6) numerator. 

The input data is shown in column 1; the result of one iteration of (2.6) in 
column 2; the difference 1 - 2 in column 3. Note that the input data is accurate 
to about 12 places. 

N=9, M-=(N)=4 

R= 13.7797513518907 ICOUNT: 1 
FOR X= 0.0000000000 Y= 0.2000000000 
C( 1)= 1.000000000000 1.000000000000 0.OOOOE+00 
C( 2)= 1.549304477942 1.549304494482 -0.1654E-07 0.5010E+00 
C( 3)= 0.246899772454 0.246899868708 -0.9625E-07 0.7784E+00 
C( 5)= 0.737060385348 0.737061249696 -0.8643E-06 0.2914E+01 
C( 7)= -0.261420075765 -0.261419800439 -0.2753E-06 0.1692E+01 
C( 11)= -0.953563663742 0.2037E+01 
C( 13)= 0.278826741784 0.1941E+01 
C( 17)= 1.307341713868 0.1805E+01 
C( 19)= 0.092558532888 0.1778E+01 
C( 23)= 1.138070636669 0.1629E+01 
C( 29)= 0.752113320290 0.1859E+01 

(2.6) denominator was: .1 385E-5 
typical cp-accuracy in output: about 10-6 

The reason for the (accuracy) degradation lies in the size of the denominator. 
In terms of floating-point arithmetic in (2.6), the earliest [i.e., "lowest"] harmon- 
ics have magnitude about 0(1) and a precison of (say) 11 digits. When the 
denominator is about 10-6 (as here), in order for cp to be sensibly bounded, 
this makes the numerator in (2.6) have to have value like 0(1) 10-6. But, then, 
the first five digits in the earliest harmonics must cancel out exactly (under 
addition). The number of significant figures in cp should therefore be about 
11 - 5 = 6. This of course agrees with what we found. 
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Taking z0 = i(.125) produces a denominator of 2.8E-14, and essentially 
no significant figures in cp. Similar behavior would ensue anytime z0 were 
accidentally positioned along a nodal line of fo. 

6. CONCLUDING REMARKS 

Any number of worthwhile problems have been raised (either directly or 
indirectly) in the preceding sections. 

Before closing, we only want to draw attention to one idea which may have 
already occurred to some readers. 

Namely, recall (2.7)-(2.8). One would very much like to know where the 
zeros of G(s)L(s) lie; in particular, are they all located along Re(s) = - ? In 
this connection, it would also be nice to know their spacing distribution (cf. 
[13]). 

Having the ability to calculate many cp-values is an important prerequisite 
to being able to explore problems of this kind experimentally. (Indeed, to being 
able to simply compute L(s)!) 

In matters of this type, cases with large Im(s) will typically be most impor- 
tant. To reach the necessary heights, one definitely needs to know many cp 
[probably out to p (constant)Im(s)] and know them to good accuracy. 

From this standpoint, then, the problem raised at the end of ?3 takes on a 
new significance. 

Whether it will ultimately prove to be possible to obtain enough cp to study 
L(s) at heights like 106 is by no means clear. [Similar remarks apply to the 
more general functions L(s, Symk) mentioned in ? 1 (and to an even greater 
degree!).] See [6, 8, 9, 13, 17] for the proper perspective. 
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